
1 everywhere convergent series
Математика: всюду сходящийся рядУниверсальный англорусский словарь > everywhere convergent series

2 everywhere convergent series
EnglishRussian scientific dictionary > everywhere convergent series
Look at other dictionaries:
Convergent series — redirects here. For the short story collection, see Convergent Series (short story collection). In mathematics, a series is the sum of the terms of a sequence of numbers. Given a sequence , the nth partial sum Sn is the sum of the first n terms… … Wikipedia
Series (mathematics) — A series is the sum of the terms of a sequence. Finite sequences and series have defined first and last terms, whereas infinite sequences and series continue indefinitely.[1] In mathematics, given an infinite sequence of numbers { an } … Wikipedia
Laurent series — A Laurent series is defined with respect to a particular point c and a path of integration γ. The path of integration must lie in an annulus (shown here in red) inside of which f(z) is holomorphic (analytic). In mathematics, the Laurent series of … Wikipedia
Taylor series — Series expansion redirects here. For other notions of the term, see series (mathematics). As the degree of the Taylor polynomia … Wikipedia
Fourier series — Fourier transforms Continuous Fourier transform Fourier series Discrete Fourier transform Discrete time Fourier transform Related transforms … Wikipedia
Divergent geometric series — In mathematics, an infinite geometric series of the form is divergent if and only if  r  ≥ 1. Methods for summation of divergent series are sometimes useful, and usually evaluate divergent geometric series to a sum that… … Wikipedia
1 − 2 + 3 − 4 + · · · — In mathematics, 1 − 2 + 3 − 4 + … is the infinite series whose terms are the successive positive integers, given alternating signs. Using sigma summation notation the sum of the first m terms of the series can be expressed as:sum {n=1}^m n( 1)^{n … Wikipedia
Uniform convergence — In the mathematical field of analysis, uniform convergence is a type of convergence stronger than pointwise convergence. A sequence {fn} of functions converges uniformly to a limiting function f if the speed of convergence of fn(x) to f(x) does… … Wikipedia
List of real analysis topics — This is a list of articles that are considered real analysis topics. Contents 1 General topics 1.1 Limits 1.2 Sequences and Series 1.2.1 Summation Methods … Wikipedia
Riemann zeta function — ζ(s) in the complex plane. The color of a point s encodes the value of ζ(s): dark colors denote values close to zero and hue encodes the value s argument. The white spot at s = 1 is the pole of the zeta function; the black spots on the… … Wikipedia
Gauss's continued fraction — In complex analysis, Gauss s continued fraction is a particular class of continued fractions derived from hypergeometric functions. It was one of the first analytic continued fractions known to mathematics, and it can be used to represent several … Wikipedia